If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-9x-144=0
a = 1; b = -9; c = -144;
Δ = b2-4ac
Δ = -92-4·1·(-144)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{73}}{2*1}=\frac{9-3\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{73}}{2*1}=\frac{9+3\sqrt{73}}{2} $
| 3(c-57)=45 | | 87=4m+23 | | 3(d−73)= | | 43=x/4+13 | | 9m-6=57 | | 5=0.3(x+8) | | g+10/4=5 | | -15u-48=-40 | | 3(d−73)=78 | | 2(p+-29)=-10 | | m+10/4=5 | | 21−4t=5 | | 2v-25=25 | | 11+3t=20 | | 2c-39=51 | | (2x+25)=(7x-61) | | z/7+16=20 | | 4u-16=32 | | b-13/6=10 | | (1.03^x)=2 | | (x+2)(x+4)=20 | | u/8=-51 | | 2(3x-4)+x-1=−16 | | 6/y-3=7 | | -41=-u/3 | | 1-m/5=3 | | 4(k-8)=16 | | 6q+19=91 | | e+12=180 | | z/3+13=17 | | 20y-11=y | | 4v–45=5v–64 |